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We are grateful for Keevil’s (2020) identification of a
mistakenly limited prior in the code we supplied as a
supplement to Reinke et al. (2020), describing a new
model. Within our paper, we demonstrated use of a hier-
archical model using mark–recapture datasets that were
also published as supplementary material. The introduc-
tion of the model was the focus of our paper and the
code was included as a courtesy to those who would like
to use the model, with parameters adjusted to suit their
needs. This transparency allowed Keevil (2020) to run
our model with the provided example datasets, identify
the limited prior, and set values of their choosing. We
are therefore pleased to see firsthand the benefits of
open access in science.
The second goal of Keevil (2020) was to cast doubt on

the validity of an earlier paper that a subset of us pub-
lished, with additional authors, in a different journal,
using a different statistical approach, and different data
(i.e., Warner et al. 2016). We address these criticisms of
our earlier work here with three points.

1) To quote Keevil (2020), “An initial comparison of
the rates of mortality senescence estimated by Reinke
et al. (2020) and Warner et al. (2016) reveals sub-
stantial empirical differences.” Long-term studies
with databases that are updated annually are
dynamic; and it is not surprising that with the accu-
mulation of additional years of data, updated ana-
lyses provide updated parameter estimates. For an
example from an author’s other peer-reviewed work,
see Bronikowski et al. (2011) versus Bronikowski
et al. (2016). Particularly if age-specific mortality is
low, species are longevous, and recapture probabili-
ties are not perfect, the sample sizes required to mea-
sure low mortality acceleration or deceleration are
quite large. Therefore, it is wholly expected that addi-
tional years of observations will result in changes in
parameter estimates. The hope, of course, is that
additional data help to move the parameter estimate
closer to the true parameter value.

2) Intraspecific variation in mortality senescence is ram-
pant both among populations and between the sexes.
Examples of variation in aging rates among wild
populations of the same species include non-human
primates (Bronikowski et al. 2002), garter snakes
(Miller et al. 2014, Schwartz et al. 2015), and vipers
(Tully et al. 2020). Our results from Warner et al.
(2016) – that a population of painted turtles in the
Mississippi River exhibit both mortality and repro-
ductive senescence – is not meant to suggest that all
populations of painted turtles everywhere must have
measurable mortality and reproductive senescence.
Rather, these data show that at least one population
does senesce along reproductive and survival axes,
which negates a broad conclusion that painted
turtles – or any turtles – do not ever senesce.

3) Given the specific questioning of the mortality results
fromWarner et al. (2016), we have run the BASTA sur-
vival package (Colchero and Clark 2012, Colchero et al.
2012) – the modeling approach used in Warner et al.
(2016) – on the painted turtle data collected through
2019 from the same population (i.e., adding four years
of data to the data used in Warner et al. (2016), which
represents our most recent fieldwork, more than dou-
bling our sample size from N = 1,031 females to
N = 2,681 females, and adding N = 1,328 males).
Using that same well established and peer-reviewed sta-
tistical approach for estimating mortality, we find signif-
icant and slow mortality aging in both sexes
(Bronikowski et al., unpublished data) (see Table 1).
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To summarize our three points in opposition to the
critique of Warner et al. (2016): growing databases will
result in parameter estimate variation – one hopes in the
direction of the true parameter value – but changes
nonetheless; intraspecific variation in rates of aging are
common with results from one population not necessar-
ily dictating a value representative of all populations of a
species; and, using the same Bayesian framework as used
in our earlier publication, we reaffirm that mortality
senescence can be measured in this population of painted
turtles. We end by recommending that a more productive
consideration is the interpretation of aging rates. Whether
turtles age very slowly, not at all, or slowly increase sur-
vival with age, what are the biological ramifications of
such findings? As was argued in Warner et al. (2016), tur-
tle aging is much slower than seen in mammals of similar
body size. The point at which extremely slow positive or
negative aging can be considered to be negligible is an
interesting and open question. When considered in a
broad comparative context, future studies that contrast
turtles as a monophyletic group versus other such groups
will help to resolve this question.
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Code and data examples were published with the original
Statistical Report as Supplemental Information (Reinke et al.
2020): https://doi.org/10.1002/ecy.2877

TABLE 1. Estimates from Program BASTA (Colchero and Clark 2012, Colchero et al. 2012) for the two-parameter Gompertz
model (Ux = Aebx), where A is the initial adult mortality rate, and b is the rate of increasing mortality with advancing adult age,
and MRDT is the mortality rate doubling time.

Gompertz model
Ux = Aebx

Gompertz slope (b)
(95% credible interval) MRDTyr

Initial mortality rate
(A)/year (95% credible interval)

Data through 2015 – Female
(N = 1,031)
(Warner et al. 2016)

0.05 (0.034–0.067) 14 yr 0.102 (0.090–0.116)

Data through 2019 – Female
(N = 2,681)

0.021 (0.006–0.038) 35 yr 0.114 (0.098–0.132)

Data through 2019 –Male
(N = 1,328)

0.071 (0.036–0.142) 10 yr 1.03 9 10�4 (1.30 9 10�5–2.33 9 10�4)
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